Abstract
This paper describes the Boost C++ template metaprogramming library (MPL), an extensible compile-time framework of algorithms, sequences and metafunction classes. The library brings together important abstractions from the generic and functional programming worlds to build a powerful and easy-to-use toolset which makes template metaprogramming practical enough for the real-world environments. The MPL is heavily influenced by its run-time equivalent - the Standard Template Library (STL), a part of the C++ standard library [STL94], [ISO98]. Like the STL, it defines an open conceptual and implementation framework which can serve as a foundation for future contributions in the domain. The library's fundamental concepts and idioms enable the user to focus on solutions without navigating the universe of possible ad-hoc approaches to a given metaprogramming problem, even if no actual MPL code is used. The library also provides a compile-time lambda expression facility enabling arbitrary currying and composition of class templates, a feature whose runtime counterpart is often cited as missing from the STL. This paper explains the motivation, usage, design, and implementation of the MPL with examples of its real-life applications, and offers some lessons learned about C++ template metaprogramming.
Keywords: template metaprogramming, generic programming, programming languages, C++, STL, type systems, polymorphism, compile-time
Table of Contents