There are cases, especially in the domain of numeric computation, when one wants to perform some part of the calculations at compile-time, and then pass the results to a run-time part of the program for further processing. For example, suppose one has implemented a complex compile-time algorithm that works with fixed-point arithmetic:
// fixed-point algorithm input typedef mpl::vector< mpl::fixed_c<-1,2345678> , mpl::fixed_c<9,0001> // .. , mpl::fixed_c<3,14159> > input_data; /* complex compile-time algorithm */ typedef /*...*/ result_data;
Suppose the result_data here is a sequence of mpl::fixed_c types that keeps the results of the algorithm, and now one wishes to feed that result to the run-time part of the algorithm. With MPL she can do this:
double my_algorithm() { // passing the results to the run-time part of the program std::vector<double> results; results.reserve(mpl::size<result_data>::value); mpl::for_each<numbers,_>( boost::bind(&std::vector<double>::push_back, &results, _1) ); // ... }
The for_each<numbers,_>(...) call is what actually transfers the compile-time result_data into run-time results. for_each is a function template declared as:
template< typename Seq , typename TransformOp , typename F > void for_each(F f) { // ... }
To call the function, one is required to explicitly provide two actual template parameters, a compile-time sequence Seq and a unary transformation metafunction TransformOp, plus a run-time function argument f (in our example, numbers, _, and boost::bind(...) correspondingly). f is a function object which operator() is called for every element in the Seq tranfromed by TransformOp.
Applying this to our example, the
mpl::for_each<numbers,_>( boost::bind(&std::vector<double>::push_back, &results, _1) );
call is roughly equivalent to this:
f(mpl::apply< _,mpl::at_c<result_data,0>::type >::type()); f(mpl::apply< _,mpl::at_c<result_data,1>::type >::type()); // ... f(mpl::apply< _,mpl::at_c<result_data,n>::type >::type());
where n == mpl::size<result_data>::type::value.